銀河スケールで影響を及ぼすクエーサーからの風
【2017年12月27日 ケック天文台】
銀河中心に位置する超大質量ブラックホールは銀河内の星形成に影響を及ぼしているようだと考えられてきたが、それがどのように起こるのかについては、はっきりとしていない。
米・カリフォルニア大学サンディエゴ校のShelley Wrightさん、Andrey Vaynerさんたちの研究チームは、地球から93億光年彼方に位置するおとめ座の銀河「3C 298」を観測し、銀河中心に存在する活動が活発な超大質量ブラックホールであるクエーサーによって生成されている強力な風を取り巻く環境を調べた。
ケック天文台(緑、青)とアルマ望遠鏡(赤、オレンジ)で観測した銀河「3C 298」。(緑)クエーサーが放つ強い光で照らし出されている銀河内の高エネルギーガス、(青)銀河内を吹き抜ける強力な風、(赤・オレンジ)冷たい分子ガス。スケールバーは3万光年に相当する(提供:A. VAYNER AND TEAM)
ケック天文台の赤外撮像分光器「OSIRIS」と高度な補償光学システム、およびアルマ望遠鏡を用いた観測の結果、クエーサーによって生成される強力な風は銀河全体を吹き抜けて星の成長に影響を及ぼしていることが明らかになった。「中心の超大質量ブラックホールがこれほど遠い距離で作られる星にまで影響を及ぼせるとは驚きです」(Wrightさん)。
私たちから近い現在の宇宙では、銀河の質量と銀河中心の超大質量ブラックホールの質量には強い相関があることが知られているが、Wrightさんたちの研究により、遠方宇宙(初期の宇宙)に存在する3C 298と中心のブラックホールの間にはそのような関係がないことが示された。3C 298の質量は、近傍宇宙と同様の関係が成り立つと考えた場合に中心のブラックホールの質量から想定される質量の100分の1しかない。このことは、ブラックホールの質量が銀河よりずっと以前に確立され、活動的なクエーサーのエネルギーが銀河の成長を制御できる可能性を示唆している。
「この銀河の研究で最も楽しかったのは、異なる波長と異なる技術を使って得られた全てのデータを合わせることでした。それぞれ最新のデータから謎を解くためのピースの一部をつなぎ合わせることができましたが、同時に銀河の本質とブラックホールの形成に関する新たな謎も生まれました」(Wrightさん)。
〈参照〉
- W.M.Keck Observatory:Astronomers Shed Light on Formation of Black Holes and Galaxies
- The Astrophysical Journal:Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy 論文
〈関連リンク〉
関連記事
- 2022/04/18 クエーサーになる直前のブラックホールを初期宇宙でとらえた
- 2022/03/22 巨大ブラックホールの隣で起こったブラックホール合体
- 2022/03/16 星の誕生が分子雲に影響を与える範囲は狭い
- 2022/03/04 129億年前の銀河から窒素と酸素を検出
- 2022/03/02 合体目前の超大質量ブラックホール連星
- 2022/03/01 いて座A*の本来の姿は丸かった
- 2022/02/24 塵のリングに隠された超大質量ブラックホール
- 2021/12/21 天の川銀河中心のブラックホールを回る星たちの鮮明な姿
- 2021/12/06 2つの意味で最も近い超大質量ブラックホールのペア
- 2021/11/29 銀河中心ブラックホール周囲のガスの内部構造を観測的に解明
- 2021/11/11 銀河団中の銀河が星の材料を失うメカニズム
- 2021/11/02 100億年前の宇宙で成長中の銀河団
- 2021/10/15 生まれたてのジェットとガス雲の壮絶な衝突現場
- 2021/10/06 初期宇宙でもう星の材料を使い切った銀河たち
- 2021/10/01 謎のガンマ線・ニュートリノの源は「暗い」巨大ブラックホールかも
- 2021/09/17 天の川銀河中心を回る星を電波で初観測
- 2021/07/27 電波銀河ケンタウルス座Aの巨大ジェットの根元にせまる
- 2021/07/09 ダークマターの地図をAIで掘り起こす
- 2021/06/17 星が誕生する環境は、銀河内の位置によって異なる
- 2021/06/15 131億年前の銀河に吹く超大質量ブラックホールの嵐